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Abstract. The renormalization group is employed to analyse a model Hamiltonian which 
gives arbitrary odd-integral values for the critical exponent 6 (where H - Md). Correspond- 
ingly. the co-dimension of the critical surface and the number of ‘relevant’ variables are each 
equal to f(S+ 1). 

1. Introduction 

The renormalization group (Wilson 197 1) has proved a useful tool in the theory of critical 
phenomena, contributing both to theoretical understanding and to numerical results. 
The models which are susceptible to more or less explicit calculation include the 
Gaussian and spherical models (eg Ma 1973), while the E expansion (Wilson and Fisher 
1972) provides an asymptotic series useful for dimension close to four. Wilson and 
Kogut (1974) give an extensive review of the subject. Certain scaling properties, justified 
by physical arguments in Wilson’s (1971) theory, are satisfied identically in a model of 
Baker (1972). 

In the usual physical situation the number of variables which must be fixed to obtain 
the critical point is two (temperature and magnetic field in the case of a ferromagnet). 
We say that the critical surface has co-dimension two, and T and H are the only two 
‘relevant’ variables in the sense of Wilson (1971); ie, they correspond to the (only) two 
eigenvalues of the linearized form of the renormalization group transformation R, which 
exceed unity. In this paper we discuss a class of models for which such a critical surface 
of co-dimension two exists, but, in addition, there is a sequence of critical surfaces of 
higher co-dimension, each contained in the closure of the previous one. For these 
smaller critical surfaces not only must T and H have their critical values, but certain 
relations among the parameters in the Hamiltonian must be satisfied. The critical 
surface of co-dimension two corresponds to  critical exponents (Fisher 1967) of the 
usual mean field type ; in particular, 6 = 3. Higher odd-integral powers of 6 are repre- 
sented by critical surfaces of higher co-dimension +(a+ 1). The critical exponent y is 
equal to unity and most of the usual scaling laws (Fisher 1967) hold, at least below the 
critical temperature. 

The model is essentially that of McKerrell and Bowers (1972, referred to  in the 
following as MB) and is rather unrealistic physically. Its great advantage is the ease 
with which explicit calculations can be performed, either by using conventional statistical 
mechanical methods, as in MB, or, as here, by employing the renormalization group. 
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Our purpose, therefore, is not to add one more to the (regrettably small) number of 
exactly soluble models in the field, but rather to contribute to the understanding of the 
renormalization group technique by demonstrating its application to a model in which 
critical surfaces of arbitrarily high co-dimension appear and can be treated explicitly. 

For the renormalization group we follow, to a large extent, the methods and nota- 
tion of Ma's (1973) very clear introduction to the subject. 

2. The model 

The model (MB) is of a cooperative assembly of N 'spins' 4(xj) = k 1 which interact by 
two-point, four-point, . . . potentials according to the Hamiltonian 

30 

where m, the magnetic moment per spin, and J are positive constants and 

a = (u2, U,$, . . .) ( 2 )  
parametrizes the model. We may regard the spin 4 ( x j )  as situated at a point x j  of a 
lattice in a space of dimension d ,  but the physically unrealistic feature of this Hamiltonian 
is, of course, that the potentials are independent of the distances between the points xj. 
This is also its great simplifying feature since if, following Ma, we define the Fourier 
components 4k of the spin field by 

4k = N-'12  1 e-'k,xJ4(xj), 
j 

then X o  depends only on +o : 
m 

bK = - J  1 a 2 r N 1 - r ~ ~ r - H m N 1 ~ 2 ~ o .  
r = l  

We define-the partition function as usual by 

Z,(T,H,a) = 2-N1exp(-Za/kT)  

= 2 - ,  exp( - JE",/kT) 
60 

(3) 

(4) 

In (5a) we use (1) for Xa and the sum is over all configurations of the 4(xj) = 1 ; in 
( 5 b )  Za is replaced by its expression in terms of $o, given in (4), the sum is over the 
possible values of bo, ie, according to (3), from -"I2 to + N 1 / 2  in steps of 2 N - 1 " 2 ,  
and a(+,) is the number of configurations of the 4(xj) which lead to the particular value 
40.  If we let r denote the number of &xi) which are - 1, say, then 

The Gibbs free energy of the model (we choose the notation of Stanley 1971) is 

G ( T ,  H ,  b )  = - lim k T N - '  InZN(T, H, a) 
N + m  

r m  I 3 0  
= - lim k T N - '  In J dd0exp( b 2 , N ' - r 4 ~ ' + H m N 1 i 2 ~ o / k T  

-30 I =  1 N - +  00 
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where 

b2, = Ja , , / kT- [2?(2 t -  1 ) I - l .  (8) 

In going from (7a) to (7b) we have used Stirling's asymptotic formula for the factorials in 
(:) and expanded the resulting logarithms in series. The replacement of the sum (over 
values of&) by an integral is justified in the thermodynamic limit ( N  -, a), provided that 
we restrict attention to values of b (and hence a) for which the integral converges. Suffi- 
cient generality for our purposes is retained on assuming, as in MB, that only a finite 
number of the aZr are nonzero. 

We denote by p a general point of the parameter space A, where we include the 
external physical variables T, H and the parameters a,, of the Hamiltonian. Thus two 
alternative representations of p in terms of coordinates in A are 

= (T,  H ,  b) = (T,  H ,  b2,  b 4 , .  . .). (9b) 

The renormalization group transformation R ,  acts on A : 

RSP = P' (10) 

and is realized as follows. In the general case (Ma 1973) where the Hamiltonian depends 
on all the & with Jkl less than some cut-off A, those & with Ikl > A/s are integrated out 
and the maximum wavevector is restored to A by the transformation 

where q is a parameter to be chosen later. In the present model only &, appears and we 
write 

(12) 

However, the multiplication of wavevectors by s, indicated in ( 1  l), means that the 
density of points in k space is reduced by a factor s - ~  and, correspondingly, that the 
number of spins described is reduced : 

($ - s' -"2&. 
0 -  

N = sdN'. (13) 
If the substitutions (12) and (13) are made in (7b), the expression in (. . .) can be re- 

stored to its original form, but in terms of primed variables b i t ,  N ' ,  &,, H',  by defining 

This leads to the relation 

G(T, H ,  b) = sWdG(T,  H' ,  b') (15) 

which will form the basis of most of the subsequent discussion. We should like to 
emphasize that the deduction of (15) from (7b) and (14) is independent of the semi- 
physical argument used above. 

Equations (14), together with the fact that Tis unchanged, supply the explicit realiza- 
tion of the renormalization group transformation (10) in the present model. 



1224 G F Fogg, A McKerrell and R G Bowers 

The renormalization group method proceeds by investigating any fixed points of the 
transformation R,  towards which the system tends with increasing s, ie points p* of A 
such that 

R y *  = p*, p' = R s p  + p* a s s +  00. (16) 

This leads to the critical point(s) of the model while the behaviour of equation (15) 
near the fixed point leads to the properties of the model near the critical point and, in 
particular, to values for the critical exponents. 

At a fixed point (T*, H * ,  b*) only one component of b*, say bf,, , can be nonzero, as 
we see from (14a), which leads also to the result 

(17) 

I t  is clear that q < 2 (the case = 2, to = 1 does not lead to critical point behaviour and 
will be excluded in the following) and so it follows from (14b) that a fixed point has 
H* = 0. 

( 2  - V)/d = ( t o  - l ) / to .  

We also define 

d + 2 - ~  
6 = 2 t , -1=  ___ 

d - 2 + ~  

an odd integer which will turn out to be the usual critical exponent. For this reason we 
will use 6, rather than t o ,  to label the transformation R ,  = Rip) and the fixed point 
p* = p@) which we have just found. Equation (14a) becomes 

(19) = bZrSd(d+ 1 -2t)/(a+ 1) 

I t  is now clear that, as s + m, 

b2, -+ by,' = 0 for 2t > 6 +  1 

for 2t  = 6 +  1 

(20a) 

(20b) b - b(a) = b 
2r - 2r 2r 

while, in order to ensure that 

b;, + b\q' = 0 

0 = b,, J a 2 , / k T - [ 2 t ( 2 t -  1)]-,' 2t < 6+1. (21) 

for 2t < 6 +  1 ,  (20c) 
we must impose the (6 - 1)/2 conditions 

First let us consider the case 6 = 3. Then (21)  yields a single condition which may be 
satisfied by fixing the temperature at a particular value T,  given in terms of the parameters 
J and a2 of the Hamiltonian by 

T, = 2Ja2/k .  (22) 
This is the generic case: fixing H = 0, T = T,  ensures that p lies on the critical 

yea) = { p :  R;')p -+ ,da)as s + a}. (23) 

This generic critical surface 9'(') has co-dimension two in d. 
The situation with higher values of 6 is rather different. Choosing T = T,  enables 

us to satisfy only one of the conditions (21). The others must be interpreted as restric- 
tions on the coefficients a2 ,  in the Hamiltonian, namely that the a,, appearing in equa- 
tion (21) must be proportional to [ 2 t ( 2 t - l ) ] - ' .  (These conditions were imposed a 

surface ,LP3) c A' (provided that b, # 0 : see below), where we define 
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priori in MB.) This means that the fixed points p(') for 6 > 3 are non-generic. They are 
realizable mathematically but a slight perturbation of the Hamiltonian (a slight change 
in a4) means that b4 is no longer zero at the critical temperature and R:")b4 diverges as 
s + CO. The transformation with a non-trivial fixed point is then R:3), leading, as we 
shall see, to the usual mean field critical exponents. 

3. The critical exponents 

We turn now to the calculation of the critical exponents corresponding to the fixed 
point p(6) of Rid). (For definitions of the critical exponents see Fisher (1967) ; our methods 
are similar to those of Ma (1973) but we choose a different starting point in the Gibbs 
free energy G(T, H ,  b).) When referring to p(a) and its properties we shall assume that 
the requisite conditions (21) on the parameters a2,  of the Hamiltonian are satisfied. 

From (15) and (14b) we have 

G(T, H, b) = s - ~ G ( T ,  H S ' ~ + ~ - ~ ) / ~ ,  b'). (24) 

The corresponding relation for the magnetization is obtained by differentiation with 
respect to H :  

M ( T ,  H, b) = -G,(T, H ,  b) = - S - ~ S ( ~ + ~ - ~ ) / ~ G ~ ( T ,  H ' ,  b') 

(25) 
where the subscript 2 denotes differentiation with respect to the second variable. 

Now we know that for T = T,  the parameters 6' approach their fixed-point values 
b'6' as s + m, independently of the value of H. We choose s (so far arbitrary) to be the 
following function of H :  

- s - ( d - 2 + v ) / Z ~ ( ~  H' b )  
3 ,  

- 

= 1 ~ ~ - 2 / ( d + 2 - v )  (26)  

so that s + 3c as H 4 0 k in such a way that H' is constant (and equal to the sign of H ) .  
Thus it is reasonable to suppose (and this is the usual assumption of the renormalization 
group method) that M(T, ,  H', b') tends to a nonzero constant k c l ,  say, and we have 

M ( T , ,  H ,  b) c1H(d-2+q)/(d+2-v) = clH'/', H + O + ,  (27) 

showing that 6 is indeed the usual critical exponent. 
The other critical exponents defined for the present model refer to the behaviour for 

T near T, and H equal to zero. We look first at the case T < T, .  We see from (19) that 
the dominant singular component of b' is 

(28) b' - b 4 6 - 1 ) / ( 6 + 1 )  = ( T , - T ) ~ ~ - V / ~ T  
2 - 2s 

where we have used (8), (18) and (22). 
We can arrange this to be of order unity by choosing 

s = (T,-T)-l/G-V). 3 (29) 
then s + CO as T -+ T,  - .  Thus we may suppose that G(T, 0, b') will be of order unity. 
(For H = 0 we see from ( 7 6 )  that the explicit T dependence is just the factor Tin  front: 
the rest comes from the T dependence in b.) Thus we have, from (15), 

1 (30) G( T, 0, b)  - c2( T,  - T)d"2 - q ,  = T, - T)(d + 1 )/(d - 1 )  
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showing that the critical exponent a' is given by 

2 -a' = (6 + 1)/(6 - l), 

M (  T, 0, b) h c3(T, - T ) ( d - 2  + W2(2-s) = c3( T, - T)l/(d- '). 

a' = (6-3)/(6- 1). (31) 

A similar calculation applied to (25) shows that 

(32) 

Thus 

p = 1/(6- 1). (33) 

The corresponding result for the susceptibility x = dM/?H is, from (25), 

x(T, 0, b') - c4(T,- T ) -  (34) x ( ~ , O ,  b) = S - ( d - 2 + s ) / 2 S ( d + 2 - ~ ) / 2  

so we have 

y' = 1. (35) 

Each successive differentiation of (25) with respect to H leads to an additional factor 

(36) S ( d  + 2 - s)/2 = ( T, - T )  - ( d  + 2 - rt)/2(2 - 9 )  

so that we obtain for the gap exponent 

A' = & d + 2 - ~ ) / ( 2 - ~ )  = 6/(6-1). (37) 

The critical exponents which we have calculated satisfy the scaling laws 

2-aI-b = p+y' = pa = A'. (38) 

The definition (18) also has the form of a scaling law, but our model does not allow the 
interpretation of v as a critical exponent since the correlation function has no space 
dependence. 

It might appear at first sight that the above results for T -+ T,- should hold also for 
T -+ T,+, but only the argument for x goes through unchanged; thus 

(39) / - )' = 1. 

G(T, 0, b) = 0, T >  T, ,  (40) 

1' - . 
Of course, M = 0 when H = 0 for T > T, as usual, but in our model 

so ct is not defined. This result and that given in MB on the non-uniqueness of A( T > T,) 
require more detailed investigation of the precise form of G than is natural in the re- 
normalization group approach. Our remarks above concerning quantities being of 
order unity are oversimplifications of the situation for T > T,  (thus great care is neces- 
sary in applying renormalization group techniques). 

For 6 = 3 only, the gap exponent A is well defined for T > T, .  For the generic fixed 
point p ( 3 )  we have 

a ' = ( ) ,  p = '  2 ,  y = y ' = 1 ,  6 = 3 ,  A = A ' = a  23 (41) 
the usual mean field critical exponents. 

We conclude with some remarks on the relation between the various critical surfaces 
Yea) in A. Each satisfies H = 0, T = T, ,  where T,  is defined by b2(T,) = 0. Each succes- 
sive value of 6, after 6 = 3, requires an additional component of b to vanish at T, ,  



Renormalization group 1227 

imposing an extra restriction on a as discussed earlier. On F), b,(T,) = 0; on 9"('), in 
addition b,(T,) = 0, and so on. The lowest critical surface 940(3) is of co-dimension two 
in A and its closure contains all higher 9'('); Yea) has co-dimension f i b  + 1) and its 
closure contains all 9'') for 6' > 6. 
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